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ABSTRACT 
 
 
 A theory of the spin dynamics of I=3/2 quadrupolar nuclei in the sudden-passage 

limit is discussed in relation to the recently observed rotational resonance (RR) effects on 

the excitation and conversion of triple-quantum coherence in the FASTER multiple-

quantum magic-angle spinning (MQMAS) experiments [T. Vosegaard, P. Florian, D. 

Massiot, and P. J. Grandinetti, J. Chem. Phys. 114, 4618 (2001)].  A novel interaction 

frame, which combines the quadrupolar interaction with the central transition radio 

frequency irradiation, is shown to be useful in understanding the complex spin dynamics 

at and away from RR conditions. Analytical expressions for the Hamiltonian obtained 

from bimodal Floquet theory are included in order to provide insight into the spin 

dynamics   observed in the FASTER MQMAS experiments. Numerical simulations have 

been performed and were found to support the theoretical formalism. 

 



I. INTRODUCTION 

 

  The study of the spin dynamics of quadrupolar nuclei in rotating samples 

is an important and active area of research in solid state NMR.  The spin dynamics of a 

quadrupolar spin under magic-angle spinning (MAS) conditions is drastically different 

from that of non-quadrupolar spin systems.  The large, time-dependent quadrupolar 

interaction complicates the spin dynamics, rendering quadrupolar nuclei unsuitable as a 

practical magnetization source in the cross-polarization MAS experiments for which 

efficient spin-locking of the magnetization is essential. In addition, the recently 

developed high-resolution multiple-quantum magic-angle spinning (MQMAS) 

technique1, 2 for half-integer quadrupolar nuclei has drawn more attention to the study of 

the spin dynamics of quadrupolar nuclei, in order to improve efficiency of the multiple-

quantum excitation and subsequent conversion to central transition coherences. 

 In 1992, A. J. Vega formulated a theory regarding the spin-locking behavior of 

the central transition (CT) coherence in quadrupolar spin systems.3, 4 The theory 

demonstrated that the spin-locking behavior is strongly dependent on the relationship 

between the magnitude of the quadrupolar interaction (ωQ), the spinning frequency (ωr), 

and the radio frequency (rf) field strength (ω1).  Vega introduced an adiabaticity 

parameter, 
rQ

2
1

ωω
ωα = , to characterize the spin-locking behavior as a function of the rf 

power. In the adiabatic region, where high rf power is applied under slow MAS (i.e., α 

>> 1), conversion from CT to multiple-quantum (MQ) transition coherence occurs during 

the spin-locking pulse and sample rotation.  Such transfers are the basis of the RIACT 
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method used in MQMAS sequences for MQ conversions.5 Under conditions of low rf 

power and rapid sample spinning (i.e., the sudden-passage limit where α << 1), the CT 

coherences are not transferred into MQ coherences, thus the CT coherences are 

effectively spin-locked.  However, when at rotational resonance (RR) conditions given by 

1/2I
nωω r

1 +
= 6,7 (where I is the spin quantum number of the quadrupolar nucleus and n is 

an integer), poor spin-locking behavior in the sudden-passage limit is observed.  This 

phenomenon has not been well understood. 

 More recently, Vosegaard et al.8 observed interesting coherence transfers in I=3/2 

nuclei at low rf power and under fast MAS, a technique called the FASTER MQMAS 

experiment.  They demonstrated that triple-quantum coherence could be created 

efficiently from triple-quantum z-magnetization when spin-locking between the 

conditions , with minimum efficiency occurring at 2 . 

Additionally, triple-quantum coherence was efficiently transferred to CT coherence at RR 

conditions, .  This may explain the poor spin-locking efficiency of the CT 

coherence at RR conditions.  However, a rigorous theoretical treatment is required in 

order to understand fully the complicated spin dynamics in the sudden-passage limit.  

Such an understanding would be useful in the design of other low rf power multiple-

quantum excitation and conversion schemes.   

r1r nω2ω1)ω(n <<−

r1 nωω =

r1 nωω =

 In this report, we present a new theoretical approach that explains the two types of 

coherence transfers exploited in the FASTER MQMAS experiments.8 An interaction 

frame involving both the quadrupolar and CT Hamiltonians is used in order to obtain 

quantitative insight into the spin dynamics.  A perturbative treatment using bimodal 
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Floquet theory9 is then employed to explore the spin dynamics of I=3/2 nuclei in the 

sudden-passage regime.   

 

II. THEORY 

 

A. Hamiltonian in the interaction frame 

 Under rf irradiation and neglecting resonance offsets and the second-order 

quadrupolar interaction, the rotating-frame spin Hamiltonian of a spin I=3/2 nucleus 

during MAS can be written in a fictitious spin ½ operator10, 11 basis as:  

 32
X1

43
X

21
X1

43
Z

21
ZQ I2ω)I(Iω3)I(t)(IωH(t) −−−−− +++−=   

                 [1] CT
RF

ST
RFQ HH(t)H ++=

where ω1 is the rf field strength.  The states are labeled as 2/3m1 I +== , 

2/1m2 I +== , 2/1m3 I −== , and 2/3m4 I −== .  The first-order 

quadrupolar frequency, ωQ(t), which is rendered time-dependent by MAS, is given by: 

  ( ) ( ) ( ) ([ ]2γt2ωsinSγtωsinS2γt2ωcosCγtωcosCω(t)ω r2r1r2r1QQ +++++++= )

 ( ) ( ) ( )





 −−= 2αcos

3
η12βsin2θsin

8
3C1  

            ( ) ( ) ( )( ) ( )





 ++= 2αcos1βcos

3
ηβsinθsin

8
3 222

2C  

            ( ) ( ) (2αsinβsin2θsin
4
η

1 −= )S  

            ( ) ( ) ( )2αsinβcosθsin
4
ηS 2

2 −=  

 4 



 
1)I(2I

3C
2πω Q

Q −
=          [2] 

 

where 
h
qQeC

2

Q =  is the quadrupolar coupling constant, and η is the quadrupolar 

asymmetry parameter. The Euler angles (α, β, γ) relate the quadrupolar principal axis 

system to the rotor-fixed coordinate system, and 







= −

3
1cos 1θ , the magic-angle.  The 

propagator for the Hamiltonian is given by: 

        [3] 








−= ∫
t

0

))dt'H(t'iexp(TU(t)

where T is the Dyson time ordering operator.  The dynamics of spin 3/2 nuclei under 

spin-locking conditions has been studied in the past.12, 13 The dynamics of the system are 

complicated by the large, time-dependent quadrupolar Hamiltonian, which does not 

commute at different times with the satellite transition term, , of the rf Hamiltonian.  

In such cases, a quadrupolar interaction frame has been used in order to remove the 

quadrupolar term from subsequent calculations in the new frame.  This has been utilized 

in the past under both static

ST
RFH

14 and MAS conditions15 to explain many phenomena in 

systems with large quadrupole moments.   

 Consider an alternative transformation defined by 

 

  [ ]




















+−= ∫ dt'H)(t'HiexpTV(t) CT

RFQ

t

0
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   [4] ∫ −−− −−−=

t

0

32
X1

43
Z

21
ZQ )tI2iω)]exp(I(I)dt'(t'ωiexp[

The first exponential term represents the ordinary transformation into the quadrupolar 

frame.  The second exponential term is an additional piece involving only the CT spin 

operator.  Since both terms commute with each other at different times, V(t) can be 

evaluated easily by simple integration.  The inclusion of the CT in the frame 

transformation makes the mechanism of RR in quadrupolar spin systems more 

transparent.   

Eq. [3] then can be rewritten as 

(t)V(t)U))dt'(t'Hiexp(T V(t)U(t) CTQ,

t

0
CTQ, =









−= ∫      [5] 

 

where UQ,CT(t) is the propagator in the interaction frame, generated by the Hamiltonian 

HQ,CT(t): 

dt
d(V(t))(t)iV)(t)H(t)V(tV(t)H ††

CTQ, −=

            

}
t

0
Q1

4

t

0
Q1

))dt'(t'ωt)]sin()sin(ω

))dt'(t'ωt)]cos()sin(ω

∫

∫

−

−{

2
X

31
X1

43
Y

21
Y

42
Y

31
Y1

43
X

21
X1

I(It))cos(ωI[(I                 

I(It))cos(ωI[(Iω3

−−−

−−−−

+−−

−++=

  [6]

 

In this frame, the satellite transitions are modulated at ω1 from the CT Hamiltonian and at 

ωr from the modulation of the quadrupolar interaction under MAS.    

Since ωQ(t) = ωQ(t +2π/ωr), 

∑∫
∞

−∞=

=
n

rn

t

0
Q t)exp(inωA))dt'(t'ωcos(  
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∑∫
∞

−∞=

=
n

rn

t

0
Q t)exp(inωB))dt'(t'ωsin(

      [7] 

 

Therefore, Eq. [6] can be expanded in a Fourier series in both ω1 and ωr to give: 

             

    
 [8]

 

)tinωexp()timωexp(HH r1
n

mn,
1m

CTQ, −−= ∑∑
∞

−∞=±=

where 

   

( ) ( n
43

Y
21

Yn
43

X
21

X11n, BIIAIIω
2
3H [ −−−−

± −−+= )

 

                

( ) ( )( )]n
42

X
31

Xn
42

Y
31

Y BIIAII
2
πiexp −−−− ++−






+ m

 
            ( ) ( )( )±±−++ TCiBACTiBAω

2
3

nnnn1 mm=    [9] 

 

where ( )41
2

1T ±=±  and ( 32
2

1C ±=± ) are the triple-quantum and CT 

states, as previously defined by Vega.3  In order to evaluate the propagator of Eq. [5], 

bimodal Floquet theory is utilized.  In the past, Floquet theory has been used in the study 

quadrupolar nuclei under spin-locking and MAS.12, 16 From Eq. [8], two natural 

frequencies, ωr (from the MAS) and ω1 (from the CT rf), arise in the problem, thus 

necessitating the use of bimodal Floquet theory.9 In the next section, bimodal Floquet 

theory is used to solve for UQ,CT(t), the propagator in the interaction frame.
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B. Bimodal Floquet Treatment 

The time dependence of the Hamiltonian complicates the evaluation of UQ,CT(t) 

since[  for  but can be removed by transforming to Floquet 

space.  However, this requires expanding a four dimensional Hilbert space to an infinite 

dimensional Floquet space.

0)](t'H(t),H CTQ,CTQ, ≠ t't ≠

17 In this space, the spin states, ±±= C,Tp , become 

“dressed” with the states MN, , which are “oscillator-like” states labeled by the number 

of quadrupolar-induced rotational quanta and CT rf quanta, respectively.  A Floquet 

Hamiltonian then can be written  

∑ ∑

∑

∑∑
∞

−∞=

∞

=

∞

−∞=

























−+

+−++++

+++++

+++

=
M

n,1-

n,-1n,-1-

n,1
1n

0,-1

0,1
p'

MN,

Np
F

1Mn,N,p'MN,p,p'Hp

MN,,p'1Mn,Np,p'Hp1Mn,N,p'MN,p,p'Hp

MN,,p'1Mn,Np,p'Hp1MN,,p'MN,p,p'Hp

MN,,p'1MN,p,p'HpMN,p,MN,p,E

H

 

      =   [11] 
















+++

++
++

−−−−

∞

=
− ∑

b)(aHbaHbaH

b)(aHbHbH
NωNω

n†
1n,

†n
n,1

n
1n,

†n†
n,1

1n
10,

†
0,11

1
r

r

where , and the operators  are defined in Eq. [9].  NMωNω  E 1rMN, +≡ 1n,H ±
r and N1 act 

similarly to number operators for the rotational and CT quanta respectively, and the 

operators a, a†, b, b† act similarly to raising and lowering operators for the rotational and 

CT “quanta” respectively.  Their matrix elements are given by   

MN,M'M,N'N,p'p,
1

1
r

r EδδδM',N',p'NωNωMN,p, =+   

M'M,N'-nN,1m,
n

1m, δδp'HpM',N',p'aHMN,p, ±± =  

M'M,nN'N,1m,
n†

1m, δδp'HpM',N',p')(aHMN,p, +±± =  
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M'-nM,N'N,1m,
n

1m, δδp'HpM',N',p'bHMN,p, ±± =  

nM'M,N'N,1m,
n†

1m, δδp'HpM',N',p')(bHMN,p, +±± =      [12] 

Eq. [3] then can be written as:  

         [13] t)iHV(t)exp(U(t) F−=

 In the following sections, nondegenerate and degenerate perturbation theories will 

be used to gain quantitative insight into the spin dynamics of quadrupolar nuclei at and 

away from RR conditions.   

1. Away from Rotational Resonance Conditions  

Away from RR conditions, the states MN,p,  and 1M,N',p' ±

1M,N' ±

1n,H ±

 are not 

degenerate with respect to rf and rotational energies, i.e. .  Therefore, non-

degenerate perturbation theory can be used to evaluate H

MN, EE ≠

F by treating the  terms as a 

perturbation to the ω  term.  The validity of a perturbation expansion requires 

that the energy difference between the states that are coupled by the perturbation be 

greater in magnitude than the coupling.  Formally this requires 

1
1

r
r NωN +

     M'M,N'NM',N'MN, HZEE −−>−       [14] 

for all possible N, M, , ' , and .  Since  is nonzero only if M- = ± , 

this gives 

N' M 1Z ≥ M'-M,N'-NH M' 1

                N'NN'N
1

1,N'N1r iBA
2
ω3

ZHZω)ωN'(N −−±− ±=>±−     [15] 

Fig. 1 gives the fraction of crystallite orientations that satisfy Eq. [15] for Z = 2 [(a), (b)] 

and Z = 4 [(c), (d)], under two different sample spinning speeds, ωr/2π = 20 kHz [(a), (c)] 

and 40 kHz [(b), (d)], with CQ = 2.43 MHz and η = 0.  As shown in Fig. 1, the fraction of 
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crystallites satisfying the perturbation criterion decreases with increasing rf power and 

decreasing ωQ/ωr.  Also, the larger the ratio of ωQ/ωr, the more RR conditions will be 

observed.  In addition, dips appear at the RR conditions nωr = ω1.  This stems from the 

fact that the states MN,,T±  and 1Mn,N,C −+±

1P,1N, H,H ±±

 are degenerate, and therefore HF 

must be explicitly diagonalized in these subspaces.  This results in a mixing triple-

quantum and CT states and is the basis for the triple-quantum conversions observed 

under RR, as will be discussed in the next section.  Although the energy difference 

between the Floquet states is greater than the coupling between them for the majority of 

crystallite orientations, Fig. 1 indicates that it is not much bigger.  This means that 

higher-order terms in the perturbation treatment must be calculated in order to fully 

describe the dynamics.   In the following treatment, we present calculations only up to 

second-order.  Using the fact that [ ] = 0 for all N and P, HF can be written to 

second-order as9, 18 

  
[ ]









+

+= −−

±=

∞

−∞=

∞

−∞=

∞

−∞=
∑∑∑∑∑ MN,MN,

SωDω
H,H

2
1MN,p,MN,p,EH

1r

SD,SD,

1SD
MN,

pMN
F

MN,MN,

)ω2(Dω
)BBA)(AI(I3ω

)ω2(Dω
)BA-B)(AI(I3iωMωNω

1r

DDDD
32

x
41

x
2
1

1r

D-DDD-
43

z
21

z
2
1

D
1r

MN





















+
+−

−
+

−
++

=
−−

−−

−−∞

−∞=
∞

−∞=

∞

−∞=

∑
∑∑  

( )( )

( )

( )
MN,MN,

)ω4(Dω
)BBA(ACCCCTTTT3ω

MN,MN,
)ω4(Dω

)BA-B(ACCCCTTTT3iω

MN,MN,CCCCTTTTMωNω

1r

DDDD
2
1

1r

DD-D-D
2
1

D

1r
MN

+

++++−−−++−−−
+

+

−−−++−−−+++
+

−−++++−−++++=

−−

∞

−∞=

∞

−∞=

∞

−∞=

∑

∑∑
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           [16] 

To this order of perturbation theory, the eigenstates of HF are given by MN,T ±  and 

MN,C ± .   In the absence of any second-order quadrupolar coupling and resonance 

offset, the density matrix at time t is given by 

( )t)sin(ωIt)cos(ωI3ρ(t) nut
41

Ynut
41

Z
−− −=        [17] 

with the initial condition ρ(0)=3 I .  This simply describes the nutation of initial 

populations, given by , into triple-quantum coherences.  The nutation frequency is 

given by: 

41
Z
−

41
ZI −

( )∑
∞

=

−−

−
+

+
+

−=
1D

2
1

2
r

2
DDDD

3
1

2
0

2
01

nut ωωD
BBAA3ω

2
)B(A3ω

ω      [18] 

Without the second-order quadrupolar coupling, Eq. [17] indicates that only  is 

generated for all crystallite orientations, i.e., only y-phase triple-quantum coherence is 

excited for each crystallite.  This explains why the creation of triple-quantum coherence 

is enhanced away from RR.  However, when halfway between RR conditions, there is a 

minimum in the efficiency of triple-quantum coherence creation.

41
YI −

8 Using Eq. [18], a 

distribution for ωnut over different crystallites can be calculated for a powder at various rf 

field strengths, as shown in Fig. 2.   From this figure, it can be seen that the powder 

averaged nutω should change signs in between RR conditions.  When ω1 ≈ (n+1/2)ωr, 

nutω = 0, with the distribution of ωnut becoming more symmetric about ωnut = 0, thus 

degrading the efficiency of the triple-quantum excitation.  This is further investigated in 

the numerical simulation section later in the text.   
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2. Near Rotational Resonance Condition 

 Near RR conditions (nωr ≈  ω1), the states MN,p,  and KMKn,N,p' −+  are 

degenerate (where K is an integer), and HF must be diagonalized explicitly in these 

subspaces.  For the perturbation treatment to be valid, the energy difference between the 

states in different nearly degenerate subspaces must be greater than the coupling between 

those states.  HF can be written as:  

nondegdegF HHH +=                     [19] 

where , which represents the portion of the HdegH F that must be diagonalized explicitly, 

is given by: 

[ ]+++−++++++= +
−−

+ baTC)iB(Ab)(aCT)iB(Aω
2
3NωNωH n

nn
n

nn1
1

1
r

rdeg

 [ ]+
−−

+ −−++−−− baCT)iB(Ab)(aTC)iB(Aω
2
3 n

nn
n

nn1   [20] 

nondegH , which represents the interactions between nondegenerate subspaces, is given by: 

baHb)(aHbHbHH n
1n,

n
n,110,0,1nondeg −−

++
−

+ +++=  

         [21] b)(aHbaHbaHb)(aH r
1r,

r
r,1

r
1r,

r
r,1

0

+
−

+
−−−

++

>≠

++++ ∑
nr

Hdeg can be diagonalized to give: 

−−++

−−++
∞

−∞=

∞

−∞=

−∆−++∆−+

−∆+++∆+= ∑ ∑

MN,MN,
n
ΦnMN,MN,MN,

n
ΦnMN,

MN,MN,
n
ΨnMN,MN,MN,

n
ΨnMN,

N M
deg

ΦΦ)δ(EΦΦ)δ(E

ΨΨ)δ(EΨΨ)δ(EH
 

where 
2
ω-nω 1r

n =∆  , 2
nn

2
1

2
n

n
Ψ |iBA|ω34

2
1

++∆=δ  and 

2
nn

2
1

2
n

n |iBA|ω34
2
1δ −+∆=Φ , and 

 12 



1-Mn,N,T))sin(θexp(-iφMN,,C)θcos(Ψ ΨΨΨMN, ++++=+  

1-Mn,N,T))cos(θexp(-iφMN,,C)θsin(Ψ ΨΨΨMN, ++−+=−  

1Mn,N,T))sin(θexp(-iφMN,,C)(θcos ΦΦΦMN, +−−+−=Φ +  

1Mn,N,T))cos(θexp(-iφMN,,C)(θsin ΦΦΦMN, +−−−−=Φ −  

2

nn
2

n
n
Ψ

nn
Ψ

iBA)δ(

iBA
)cos(θ

++∆+

+
=  

2

nn
2

n
n
Ψ

n
n
Ψ

Ψ

iBA)∆(δ

∆δ)sin(θ
+++

+
=  

2

nn
2

n
n
Φ

nn
Φ

iBA)∆(δ

iBA
)cos(θ

−+−

−
=  

2

nn
2

n
n
Φ

n
n
Φ

Φ

iBA)∆(δ

∆δ)sin(θ
−+−

−
=  

|iBA|
iBA)exp(iφ

nn

nn
Ψ +

−
= −−  

|iBA|
iBA)exp(iφ

nn

nn

−
−

=Φ         [22] 

Starting with initial x-phase CT coherence, ∑−=
NM

32
XF MN,MN,I(0)ρ , the density 

matrix can be rewritten as: 

MN,,CMN,,CMN,,CMN,,C
2
1MN,MN,I(0)ρ

MN,MN,

32
XF −−−++== ∑∑−  

++= −−++∑ MN,MN,Ψ
2

MN,MN,Ψ
2

MN,

ΨΨ)(θsinΨΨ)(θcos
2
1  
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 ( ) ++
Φ

−++− ∑−+ MN,MN,
2

MN,
MN,MN,MN,MN,ΨΨ ΦΦ)(θcos

2
1ΨΨΨΨ))sin(θcos(θ  

( )−++−
ΦΦ

−−
Φ +++ MN,MN,MN,MN,MN,MN,

2 ΦΦΦΦ))sin(θcos(θΦΦ)(θsin  [23] 

 ρF(t), to the lowest order in perturbation theory is:  

∑ −−++ +=
MN,

MN,MN,Ψ
2

MN,MN,Ψ
2 ΨΨ)(θsinΨΨ)(θcos

2
1         

( )−++− ++ MN,MN,
n
ΨMN,MN,

n
ΨΨΨ ΨΨt)exp(-2iδΨΨt)exp(2iδ))sin(θcos(θ  

++− −−
Φ

++
Φ∑ MN,MN,

2
MN,MN,

2

MN,
ΦΦ)(θsinΦΦ)(θcos

2
1

   

( )−++−
ΦΦ + MN,MN,

n
ΦMN,MN,

n
Φ ΦΦt)exp(-2iδΦΦt)exp(2iδ))sin(θcos(θ    [24] 

In Hilbert space, the reduced density matrix for the spin is given by20 

(t)t)V)ωM'(Mt)ωN'exp(i(NM',N'(t)ρMN,V(t)ρ(t) †
1rF

M',N'MN,
−+−= ∑∑  [25] 

From the density matrix, the following expectation values can be calculated: 

(t)I 41
X
− =Trace[I  ρ(t)]41

X
−

              = t)]cos(2δ)[1(θ)cos(θsin
2
1t)]cos(2δ)[1(θ)cos(θsin

2
1 n

Ψ
22n

Φ
22 −+− ΨΨΦΦ      

(t)I 41
Y
− =Trace[I  0ρ(t)]41

Y =−

(t)I 41
Z
− =Trace[I         [26] 0ρ(t)]41

Z =−

From this expression, it can be seen only that only x-phase triple-quantum coherence 

( ) is created for each orientation.  The coefficient in front of 41
XI − 41

XI −  is always positive.  

41
XI −  is maximal when ∆n = 0 (at RR) and is minimal when ∆n >> 1 (away from RR).     
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CT to triple quantum coherence transfer is also possible from the initial condition 

.  Taking ∆32
YIρ(0) −= n = 0, a similar calculation shows that, starting with 

∑
MN,

3 MN,MN,−= 2
YF I(0)ρ , the following expectation values can be calculated: 

(t)I 41
X
− =Trace[I =0 ρ(t)]41

X
−

(t)I 41
Y
− = Trace[I  = ρ(t)]41

Y
− )t)cos(t)sin(δsin(δ

2
1

Ψ
nn

ΦΦΨ −ϕϕ   

(t)I 41
Z
− = Trace[I  =ρ(t)]41

Z
− )t)sin(t)sin(δsin(δ

2
1

Ψ
nn

ΦΦΨ −− ϕ ϕ    [27] 

However, the efficiency for  →  is less than that for  →  since the 

polarization vector for the states 

32
YI − 41

YI − 32
XI − 41

XI −

1 and 4  lies in the Y-Z plane with crystallite-

dependent phase given by ϕ  (Eq. [27]).  That is, although the CT coherence is 

transferred to triple-quantum coherence, cancellation occurs due to powder averaging.  

This will be verified numerically in Section III.     In addition, starting with the initial 

density matrix 

Φ−ϕΨ

∑
M

N,−

N,

4 M= 1
ZF MI3(0)ρ N, , a similar calculation as above gives the 

following expectation values: 

(t)I 41
X
− =Trace[I =0 ρ(t)]41

X
−

(t)I 41
Y
− = Trace[I  = ρ(t)]41

Y
− )](θ)sin(θcos)(θ)cos(θt)[sinδtsin(δ

2
3

Φ
2

Ψ
2

Φ
2

Ψ
2n

Φ
n
Ψ −+−  

   )](θ)cos(θcos)(θ)sin(θt)[sinδ-tsin(δ
2
3

Φ
2

Ψ
2

Φ
2

Ψ
2n

Φ
n
Ψ −−   

(t)I 41
Z
− = Trace[I  = ρ(t)]41

Z
− )](θ)cos(θsin)(θ)sin(θt)[cosδtcos(δ

2
3

Φ
2

Ψ
2

Φ
2

Ψ
2n

Φ
n
Ψ ++  
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    + ])(θ)sin(θsin)(θ)cos(θt)[cosδtcos(δ
2
3

Φ
2

Ψ
2

Φ
2

Ψ
2n

Φ
n
Ψ +−    [28] 

At RR conditions, 
2

1)sin(θ)sin(θ)cos(θ)θ ΦΨΦΨ ====cos( , and hence (t)I 41
Y
− = 0 

for all times t at this order of perturbation theory.  Therefore the triple-quantum excitation 

efficiency is predicted to be minimal at RR conditions.  

C. Spin I > 3/2  

For spin  I > 3/2, similar predictions are possible.  Analogous transformations can 

be made for higher spins.  However, the dynamics are more complicated since there are 

additional transitions present.  Using the above theory, predictions can be made for the 

spin-locking of the CT.  The rotating frame Hamiltonian of a quadrupolar spin I, 

evolving during MAS and spin-locking irradiation, is given by: 

 CT
X1

ST
RF

2
ZQ Iω

2
1IH1))I(I(t)(3Iω 






 ++++−=H(t)      [29] 

Upon transforming to the quadrupolar and CT frame, the satellite transition coherences 

that are adjacent to the CT coherence are modulated at a frequency 1ω4
1)(2I +

=ω .  

Therefore, the CT coherences will be transformed to adjacent satellite transition 

coherences when r1 nω
12I

4
+

=ω .  In accordance with our predictions, previous studies 

have found that under these conditions, the spin-locking efficiency of the CT is minimal 

(in the absence of second-order quadrupolar effects).6, 7  Further investigations of 

transfers between CT coherence and nonadjacent satellite transition coherences are 

currently under way.  
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III. NUMERICAL SIMULATION RESULTS 

A. Excitation of Triple Quantum Coherences 

Fig. 3 shows [(a), (d)] 41I −
− , [(b), (e)] 41

XI − , and [(c), (f)] 41
YI − , from the initial 

condition ρ  under a spin-locking field along the x direction as a function of 

spin-locking time and rf field strength.  The parameters used in this calculation were C

41
Z3I(0) −=

Q = 

2.43 MHz, η = 0 with 
2π
ω r = 20 kHz.   Simulations were performed with [(a), (b), (c)] and 

without [(d), (e), (f)] the second-order quadrupolar interaction.  As observed in a previous 

study,8 efficient triple-quantum excitation occurs between RR conditions (e.g. 15 kHz < 

ω1/2π < 25 kHz when ωr/2π = 20 kHz) in the sudden-passage regime, although the 

efficiency is minimal at RR and roughly halfway in between RR conditions (i.e., 

).  The inclusion of the second-order quadrupolar interaction does not change 

the basic dependence of the magnitude of triple-quantum excitation as a function of rf 

power, but the overall efficiency of the excitation is then diminished due to a dephasing 

of the coherence.  As predicted in Eq. [17], only  triple-quantum coherence is created 

in the absence of the second-order quadrupolar interaction, as shown in Fig. 3(e) and (f).  

Also, the powder-averaged nutation frequency changes sign in between RR conditions, 

which was predicted in the previous section. 

r1 nω2ω =

41
YI −

In order to investigate triple-quantum excitation in more detail, simulations were 

performed for three crystallite orientations whose quadrupolar interactions have different 

time dependences.  From Eq. [2], ωQ(t) oscillates at 2ωr for β = 90o when η = 0.  For 

small values of β (e.g. 10o), ωQ(t) oscillates roughly at ωr, and for medium values of 

β (e.g. 45o), ωQ(t) oscillates at both ωr and 2ωr.  Thus, these orientations were chosen to 

 17 



explore what effects different time dependences of ωQ(t) have on the observed triple-

quantum excitation. 

Fig. 4 shows 41
YI −−

r

 for these three crystallite orientations. The second-order 

quadrupolar interaction is not considered in the following simulations since it does not 

affect the basic features of the triple-quantum excitation.  From Eq. [7], it can be shown 

by expanding in Bessel functions that for β = 90o,  only when n is even, 

whereas for β = 10

0H 1n, ≠±

o and 45o,  can be nonzero for all n.  At RR conditions (e.g., 

ω

1n,H ±

1/2π = 20 for β = 10o and 45o [Fig. 4(b)] and ω1/2π = 40 kHz for β =10o, 45o, and 90o 

[Fig. 4(f)] respectively), the triple-quantum excitation efficiency is minimal.  Away from 

RR conditions, triple-quantum coherence is created efficiently but with a different 

optimum condition for each crystallite orientation (Fig. 4(a), 4(c), 4(d), 4(e)).  This 

results in considerable destructive interference in the triple-quantum excitation signal, 

degrading the overall excitation efficiency for a powdered sample.  As seen in Fig. 3, 

when , the efficiency of triple-quantum excitation is near zero, which is 

consistent with the predictions made in section II.  For β = 10

1 1/2)ω(nω +≈

o, where ωQ(t) oscillates at 

ωr, a change in the sign of ωnut is seen between ω1/2π = 15 and 25 kHz (Figs. 4(a) and 

4(c) respectively).  Similar behavior also was observed for β = 90o between ω1/2π of 35 

kHz and 45 kHz. Note also that halfway in between RR conditions, i.e., ω1=(n+1/2)ωr, 

excitation efficiency is nonzero for these crystallite orientations [Fig. 4 (d)];  in fact for 

β=90o, triple-quantum excitation is most efficient at ω1/2π = 30 kHz.  However, the 

powder average of the excitation efficiency vanishes near this condition.  This minimum 

is qualitatively different than those minima occurring at RR conditions, which result from 
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a mixing of CT coherence states with triple-quantum coherence states (Eq. [28]).  These 

effects will be discussed in the next section.   

Although Eq. [17] predicts a simple nutation away from RR conditions, Fig. 4 

indicates that the dynamics are more complicated.  Inclusion of higher-order terms in the 

perturbation treatment of Eq. [16] would be necessary in order to quantitatively capture 

the evolution.  Such work is in currently in progress.         

 

B. Conversion of CT Coherence into Triple Quantum Coherence 

Fig. 5 shows [(a), (d)] 41I −
− , [(b), (e)] 41

XI − , and [(c), (f)] 41
YI −

41
ZI −

 (with [(a), (b), 

(c)] and without [(d), (e), (f)] considering second-order quadrupole interactions) created 

from CT coherence ( I ) under the influence of the rf irradiation along the x-direction, 

as a function of rf power and spin lock time.  In contrast to the →  transfer, 

optimum transfer occurs at RR conditions.  In the absence of the second-order 

quadrupolar interaction, only the x-component of triple-quantum coherence, , is 

created, which is predicted from Eq. [26].  In Fig. 6, 

32
X

−

41I −
−

41
XI −

41
XI −  is shown for the first two RR 

conditions for three crystallite orientations in the absence of second-order quadrupolar 

interactions.   As predicted in the theory section, effective coherence transfer is induced 

at RR conditions (i.e. ω1/2π = 20 kHz for β = 10o and 45o and ω1 = 40 kHz for β = 10o, 

45o, and 90o).  As mentioned in the previous section, RR effects only occur for β=90o 

when ω1= 2nωr, i.e., only even RR conditions occur for this crystallite, whereas both 

even and odd occur β = 10o and 45o.  Note that in Fig. 6, 0I 41
X ≥−  for all crystallites and 

for all times, which was predicted from Eq. [26].  In Fig. 7, 41
XI −  was calculated using 
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Eq. [26] for the three orientations.  Fig. 7(a) is in very good with the exact numerical 

calculation of Fig. 6(a).  In Fig. 7(b) the agreement with Fig. 6(b) is not as good; in 

particular, the predictions for β = 10o have little resemblance with the exact numerical 

simulation.  Since the theory is just to zeroth-order, higher-order terms are expected to 

become important in order to quantitatively predict 41
XI −

4
Y
−

(t).     

Another aspect of the Hamiltonian under RR conditions is that it can induce 

coherence transfer between I  ↔ , even though the rf irradiation is along the x-

direction.  Numerical calculations of the I  ↔  transfer were performed in order to 

confirm these predictions.  In Fig. 8, 

32
Y

− 41
YI −

32
Y

− 1I

41
_I −  was calculated over a powder for two 

different spinning speeds, ωr/2π = 20 kHz [Fig. 8(a)] and ωr /2π = 40 kHz [Fig. 8(b)].   

Efficient transfer was not observed for almost all rf powers.   

Calculations  ↔  were performed for single crystallite orientations in 

order to check if the inefficiency of the transfer was due to a destructive interference 

between different crystallite orientations.  Fig. 9 shows the simulation results for  → 

 transfers at RR conditions, in the absence of second-order quadrupolar interaction 

and resonance offsets.  Interestingly, efficient transfer does occur for all three crystallite 

orientations.  However, significant destructive interference across the powder is observed 

for these crystallite orientations even without considering the second-order quadrupole 

interaction.  As seen from Eq. [27] and Fig. 9, the expectation values of triple-quantum 

coherence can be either positive or negative resulting in a cancellation of the triple-

quantum coherence signal in a powdered sample. 

32
YI − 41

YI −

32
YI −

41
YI −
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IV. CONCLUSIONS 

The purpose of this study was to present a theory of the excitation and conversion 

between multiple-quantum coherences in spin I = 3/2 quadrupolar nuclei in powdered 

samples in the sudden-passage limit.  The theory is applicable to rf irradiation even at RR 

conditions (ω1 = nωr) and may be extended to included resonance offset and second-order 

quadrupolar effects, as well as potentially generalized to the treatment of I > 3/2 nuclei.  

It may be used to predict the results of the recent FASTER MQMAS experiments8, as 

well as the heretofore-unexplained reductions in spin-locking efficiency of the central 

transition at rotational resonance conditions6, 7.  A complete analytic theory of this sort 

has not been presented elsewhere. In this work, the spin-locking Hamiltonian was first 

transformed into a novel combined quadrupolar and CT interaction frame and then 

rendered time-independent via a bimodal Floquet treatment.  At this point, perturbation 

theory was used in order to describe the spin dynamics at and away from RR.  At RR 

conditions, the conversion of CT coherence to triple-quantum coherence was found to be 

efficient over a powdered sample.  When the phase of the rf irradiation is along the x-

direction,  →  is efficient over the powder;  however, I  →  is inefficient 

due to the fact that the signals from different crystallites destructively interfere, resulting 

in an overall degradation of the coherence transfer efficiency.  Away from RR conditions, 

the excitation of triple-quantum coherence from z-magnetization was found to be 

efficient, and minimal excitation occurs for most crystallites when at RR.  However, 

when roughly halfway in between RR conditions, the overall excitation efficiency also 

was found to be minimal, this time due to a cancellation of signals over the powder.   

32
XI − 41

XI − 32
Y

− 41
YI −
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 In future work, the theory will be extended to higher-orders of perturbation theory 

since the energy difference between the Floquet states is not much greater than the 

coupling between them, necessitating the inclusion of higher-order corrections into the 

theory.  Also, the calculation of higher-order perturbation terms will be necessary in 

order to understand the dynamics of I>3/2 nuclei in the sudden-passage limit, such as 

five-quantum coherence creation and the corresponding multiple-quantum conversions.  

Further theoretical and experimental studies are currently underway.    
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FIGURE CAPTIONS: 

 

Figure 1. The fraction of crystallite orientations satisfying Eq. [15] as a function of rf 

field strength, ω1.   For  and C0η = Q= 2.43 MHz, 2000 pairs of powder angles (  

were generated using the REPULSION sampling.

)γβ,

19 The Fourier coefficients AN and BN 

of Eq. [7] were generated for these angles up to |N| = 80.  Eq. [7] was then directly 

evaluated for each orientation.  Spinning speeds of ωr/2π = 20 kHz [(a), (c)] and ωr/2π = 

40 kHz [(b), (d)] were examined. The number of crystallites satisfying the condition 

1,N' ±−N1r H2ω)ωN'(N >±−  for all N and N’ are presented in (a) and (b) while those 

satisfying the condition 1,N'N1r H4ω)ωN' ±−>±(N −  for all N and  are shown in (c) 

and (d).   RR conditions are shown with a dotted line.  As ω

N'

1 increases, the number of 

crystallites satisfying Eq. [15] decreases.         

 

Figure 2. The distribution for _ωnut over a powder calculated from Eq. [18] for various ω1 

values.  For , C0η = Q= 2.43 MHz, and ωr/2π = 20 kHz, only those crystallites satisfying 

the condition 1,N'N1r H2ω)ωN' ±−>±(N −  were considered from a set of 2000 powder 

points.  ω1/2π values of (a) 25 kHz, (b) 30 kHz, (c) 35 kHz, (d) 45 kHz, (e) 50 kHz, and 

(f) 55 kHz were used.  
2π
ωnut  is average nutation frequency over the powder, and σ is the 

standard deviation.  From the distributions it can be seen that the mean value of the 

distribution shifts from positive to negative in between RR conditions, passing through 

zero roughly midway.       
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Figure 3. Exact numerical calculation of [(a), (d)] 14I− , [(b), (e)] 41
XI − , and [(c), (f)] 

41
YI −−

106 ×−

 under rf irradiation along the x-direction applied to ρ(0) = 3I , with [(a), (b), 

(c)] and without [(d), (e), (f)] considering the second-order quadrupolar interaction, as a 

function of rf power and pulse length.  The parameters used in the simulation were η , 

and C

41
Z
−

0=

Q= 2.43 MHz.  A total of 1154 crystallite orientations were employed at a ωr/2π = 

20 kHz for the powder average.  RR conditions are shown with a dotted line.  Equally 

spaced contour levels are shown (with dashed contours indicating negative values) in the 

following ranges:  (a) {0.1, 0.45}, (b) {-0.3, 0.3}, (c) {-0.15, 0.2}, (d) {0.15, 0.6}, (e) 

{ }, and (f) {-0.3, 0.5}.   1414 103, −− ×

 

Figure 4. Exact numerical calculation of 41
YI −−  for the three crystallite orientations (β = 

10o  (dashed line), β = 45o (dotted line), and β = 90o (solid line)) created from ρ(0) = 

 at various rf powers: (a) 15, (b) 20, (c) 25, (d) 30, (e) 35, and (f) 40 kHz.  The 

parameters used in the simulation were ω

41
ZI3 −

r/2π = 20 kHz, , and C0η = Q= 2.43 MHz.  In 

particular, note that (d), excitation is efficient for both β = 90o and β = 10o, as contrasted 

to excitation at RR conditions in (b) (for β = 10o and 45o) and (f) (β = 10o, 45o, and 90o) 

where the excitation efficiency is minimal.    

 

Figure 5. Exact numerical calculation of [(a), (d)] 14I− , [(b), (e)] 41
XI − , and [(c), (f)] 

41
YI − , under spin-locking along the x-direction applied to , with [(a), (b), (c)] and 

without [(d), (e), (f)] considering second-order quadrupolar interaction, as a function of 

32
XI −
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the rf power and pulse length.  The parameters in the simulation were ωr/2π = 20 kHz, 

, and C0η = Q= 2.43 MHz.  A total of 1154 crystallite orientations were employed in the 

calculation.  Equally spaced contour levels are shown (with dashed contours indicating 

negative) in the following ranges:  (a) {0.06, 0.24}, (b) {0.02, 0.22}, (c) {-.12, 0}, (d) 

{0.06, 0.24}, (e) {0.06, 0.24}, and (f) { }.  Only the first two RR 

conditions, ω

1514 102,102.1 −− ××−

32
XI −

1 = ωr and ω1 = 2ωr were observed for these parameters [(a), (d)], and, as 

shown in (e), only efficient transfer was observed for  →  [(b), (e)], with 41
XI −

0≥I 41
X
−  for all time and ω1.in the absence of second-order quadrupolar interaction.  As 

shown in (f),  →  is negligible over the powder in the absence of second-order 

quadrupolar interaction.  RR conditions are marked with a dotted line.     

32
XI − 41

YI −

41
XI −

32
XI −

η

0≥I1
X

 

Figure 6. Exact numerical calculation of  for three orientations (β = 10o  (dashed 

line), β = 45o (dotted line), and β = 90o (solid line)) from  at rf field strengths of (a) 

ω1/2π= 20 and (b) ω1/2π= 40 kHz in the absence of second-order quadrupolar coupling.  

The parameters used in the simulation were ωr/2π = 20 kHz, , and C0= Q= 2.43 MHz.  

Again, 4−  for all three orientations, as predicted in Eq. [26].  

 

Figure 7.  Calculation of 41
XI −  for three orientations (β = 10o  (dashed line), β = 45o 

(dotted line), and β = 90o (solid line)) from  at rf field strengths of (a) ω32
XI −

1/2π= 20 and 

(b) ω1/2π= 40 kHz using Eq. [26].  The parameters used were ωr/2π = 20 kHz, , and 0η =
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CQ= 2.43 MHz.  Eq. [26] is able to predict many of the features in the exact numerical 

simulation of Fig. 6. 

 

Figure 8. Exact numerical calculation of 41-I−  under rf irradiation along the x-direction 

applied to  (a) with and (b) without considering second-order quadrupole interaction, 

as a function of the rf power and pulse length.  The parameters used in the simulation 

were ω

32
YI −

r/2π = 20 kHz, , and C0η = Q= 2.43 MHz.  Equally spaced contour lines are 

shown with between {0.012, 0.026}.  A total of 1154 crystallite orientations were 

employed in the simulation, and RR conditions are marked with a dotted line. 

 

Figure 9. Exact numerical calculation of 41
YI −−  for the three orientations (β = 10o 

(dashed line), β = 45o (dotted line), and β = 90o (solid line)) from ρ(0) =  at rf field 

strengths of (a) ω

32
YI −

1/2π = 20 and (b) ω1/2π = 40 kHz.  The parameters used in the 

simulation were ωr/2π = 20 kHz, , and C0η = Q= 2.4 MHz.     
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